Home / Albums / Technology 46
This album shows the technical side of life

-
Astronomy
43 pictures
-
Farm Machinery
4 pictures
-
Transport
3 pictures
411 pictures in 3 sub-albums -
Inventions
25 pictures
-
Weapons
58 pictures
144 pictures in 6 sub-albums -
Musical Instruments
74 pictures
12 pictures in 2 sub-albums

-
In the development of speed, some remarkable craft are built. Each year there is an international air race for the possession of the Gordon-Bennett trophy, and to win this designers build special craft. In tiny monoplanes, engines of high power are installed; and the sustaining wings are so reduced, to give a maximum speed, that the machines appear more like projectiles than flying craft. A purely racing-type monoplane is seen in figure.. It represents a Deperdussin, which, with an engine of 160 horse-power, reached a speed of 130 miles an hour. How small this machine was, in relation to its engine-power, will be realised from the fact that the sustaining surface of its wings amounted to only 104 square feet—far less lifting area, in fact, than Lilienthal used in his gliders. Wires and struts are reduced to a minimum; the body is tapered and smoothed. Such a machine, although it carries speed to an extreme, and is in reality a “freak,” teaches useful lessons. But though it provides data for the construction of high-speed scouts, a monoplane of this type would be useless for cross-country flying; and for the reason that it cannot be manœuvred, prior to an ascent, upon anything save the smoothest of ground. Its wings being so small, to ensure a maximum of speed, the machine will not rise until it has run forward a long distance across the ground; and during this run it attains a speed of nearly 90 miles an hour. At such a pace, unless the ground below its wheels was level, it would leap, swerve, and probably overturn. When alighting from a flight, also, again owing to the smallness of its wings, the craft has to plane down so fast that its pilot could not land safely unless he had below him a surface that was absolutely smooth.
A. Propeller
B. Shield to lessen wind resistance
C. Sloping shield which encloses engine (also to minimise wind-pressure). Air passes between the shields B and C to cool the motor.
D. Pilot’s seat
E. Padded projection against which, when at high speed, the pilot rests his head
F. Sustaining-plane Very slightly cambered
G. Rudder
H. Elevating-plane
I. Landing wheels.
161 visits
-
Of the Water-Insect or Gnat.
This little creature, described in the first Figure of the 27. Scheme, was a small scaled or crusted Animal, which I have often observ'd to be generated in Rain-water; I have also observ'd it both in Pond and River-water. It is suppos'd by some, to deduce its first original from the putrifaction of Rain-water, in which, if it have stood any time open to the air, you shall seldom miss, all the Summer long, of store of them frisking too and fro.
'Tis a creature, wholly differing in shape from any I ever observ'd; nor is its motion less strange: It has a very large head, in proportion to its body, all covered with a shell, like other testaceous Animals, but it differs in this, that it has, up and down several parts of it, several tufts of hairs, or brisles, plac'd in the order express'd in the Figure; It has two horns, which seem'd almost like the horns of an Oxe, inverted, and, as neer as I could guess, were hollow, with tufts of brisles, likewise at the top; these horns they could move easily this or that way, and might, perchance, be their nostrils. It has a pretty large mouth, which seem'd contriv'd much like those of Crabs and Lobsters, by which, I have often observ'd them to feed on water, or some imperceptible nutritive substance in it.
430 visits
-
... this the conformity or congruity of many other parts common to either of them, will strongly argue, their crustaceous armour, their number of leggs, which are six, beside the two great claws, which answer to the wings in Insects; and in all kind of Spiders, as also in many other Insects that want wings, we shall find the compleat number of them, and not onely the number, but the very shape, figure, joints, and claws of Lobsters and Crabs, as is evident in Scorpions and Spiders, as is visible Schem. 31.
426 visits
-
I took a large grey Drone-Fly, that had a large head, but a small and slender body in proportion to it, and cutting off its head, I fix'd it with the forepart or face upwards upon my Object Plate (this I made choice of rather then the head of a great blue Fly, because my enquiry being now about the eyes, I found this Fly to have, first the biggest clusters of eyes in proportion to his head, of any small kind of Fly that I have yet seen, it being somewhat inclining towards the make of the large Dragon-Flies. Next, because there is a greater variety in the knobs or balls of each cluster, then is of any small Fly.) Then examining it according to my usual manner, by varying the degrees of light, and altering its position to each kinde of light, I drew that representation of it which is delineated in the 24. Scheme, and found these things to be as plain and evident, as notable and pleasant.
418 visits
-
The parts of the Feathers of this glorious Bird appear, through the Microscope, no less gaudy then do the whole Feathers; for, as to the naked eye 'tis evident that the stem or quill of each Feather in the tail sends out multitudes of Lateral branches, such as AB in the Schem. 22.
Fig. 3.third Figure of the 22. Scheme represents a small part of about 1/32 part of an Inch long, and each of the lateral branches emit multitudes of little sprigs, threads or hairs on either side of them, such as CD, CD, CD, so each of those threads in the Microscope appears a large long body, consisting of a multitude of bright reflecting parts, whose Figure 'tis no easie matter to determine, as he that examines it shall find; for every new position of it to the light makes it perfectly seem of another form and shape, and nothing what it appear'd a little before; nay, it appear'd very differing ofttimes from so seemingly inconsiderable a circumstance, that the interposing of ones hand between the light and it, makes a very great change, and the opening or shutting a Casement and the like, very much diversifies the appearance. And though, by examining the form of it very many ways, which would be tedious here to enumerate, I suppose I have discover'd the true Figure of it, yet oftentimes, upon looking on it in another posture, I have almost thought my former observations deficient, though indeed, upon further examination, I have found even those also to confirm them.
560 visits
-
The Seeds of Purslane seem of very notable shapes, appearing through the Microscope shap'd somewhat like a nautilus or Schem. 20.Porcelane shell, as may be seen in the XX. Scheme, it being a small body, coyl'd round in the manner of a Spiral, at the greater end whereof, which represents the mouth or orifice of the Shell, there is left a little white transparent substance, like a skin, represented by BBBB, which seems to have been the place whereunto the stem was join'd. The whole surface of this Coclea or Shell, is cover'd over with abundance of little prominencies or buttons very orderly rang'd into Spiral rows, the shape of each of which seem'd much to resemble a Wart upon a mans hand. The order, variety, and curiosity in the shape of this little seed, makes it a very pleasant object for the Microscope, one of them being cut asunder with a very sharp Penknife, discover'd this carved Casket to be of a brownish red, and somewhat transparent substance, and manifested the inside to be fill'd with a whitish green substance or pulp, the Bed wherein the seminal principle lies invelop'd.
489 visits
-
The small seeds of Poppy, which are described in the 19. Scheme, both for their smalness, multiplicity and prettiness, as also for their admirable soporifick quality, deserve to be taken notice of among the other microscopical seeds of Vegetables: For first, though they grow in a Case or Hive oftentimes bigger then one of these Pictures of the microscopical appearance, yet are they for the most part so very little, that they exceed not the bulk of a small Nitt, being not above 1/32 part of an Inch in Diameter, whereas the Diameter of the Hive of them oftentimes exceeds two Inches, so that it is capable of containing near two hundred thousand, and so in all likelihood does contain a vast quantity, though perhaps not that number. Next, for their prettiness, they may be compar'd to any microscopical seed I have yet seen; for they are of a dark brownish red colour, curiously Honey-comb'd all over with a very pretty variety of Net-work, or a small kind of imbosment of very orderly rais'd ridges, the surface of them looking not unlike the inside of a Beev's stomack. But that which makes it most considerable of all, is, the medicinal virtues of it, which are such as are not afforded us by any Mineral preparation; and that is for the procuring of sleep, a thing as necessary to the well-being of a creature as his meat, and that which refreshes both the voluntary and rational faculties, which, whil'st this affection has seis'd the body, are for the most part unmov'd, and at rest. And, methinks, Nature does seem to hint some very notable virtue or excellency in this Plant from the curiosity it has bestow'd upon it. First, in its flower, it is of the highest scarlet-Dye, which is indeed the prime and chiefest colour, and has been in all Ages of the world most highly esteem'd: Next, it has as much curiosity shew'd also in the husk or case of the seed, as any one Plant I have yet met withall; and thirdly, the very seeds themselves, the Microscope discovers to be very curiously shap'd bodies; and lastly, Nature has taken such abundant care for the propagation of it, that one single seed grown into a Plant, is capable of bringing some hundred thousands of seeds.
426 visits
-
These pretty fruits here represented, in the 18. Scheme, are nothing else, but nine several seeds of Tyme; they are all of them in differing posture, both as to the eye and the light; nor are they all of them exactly of the same shape, there being a great variety both in the bulk and figure of each seed; but they all agreed in this, that being look'd on with a Microscope, they each of them exactly resembled a Lemmon or Orange dry'd; and this both in shape and colour. Some of them are a little rounder, of the shape of an Orange, as A and B, they have each of them a very conspicuous part by which they were join'd to their little stalk, and one of them had a little piece of stalk remaining on; the opposite side of the seed, you may perceive very plainly by the Figure, is very copped and prominent, as is very usual in Lemmons; which prominencies are express'd in D, E and F.
They seem'd each of them a little creas'd or wrinckled, but E was very conspicuously furrow'd, as if the inward make of this seed had been somewhat like that of a Lemmon also, but upon dividing several seeds with a very sharp Pen-knife, and examining them afterward, I found their make to be in nothing but bulk differing from that of Peas, that is, to have a pretty thick coat, and all the rest an indifferent white pulp, which seem'd very close; so that it seems Nature does not very much alter her method in the manner of inclosing and preserving the vital Principle in the seed, in these very small grains, from that of Beans, Peas, &c.
450 visits
-
This Beard of a wild Oat, is a body of a very curious structure, though to the naked Eye it appears very slight, and inconsiderable, it being only a small black or brown Beard or Bristle, which grows out of the side of the inner Husk that covers the Grain of a wild Oat; the whole length of it, when put in Water, so that it may extend it self to its full length, is not above an Inch and a half, and for the most part somewhat shorter, but when the Grain is ripe, and very dry, which is usualy in the Moneths of July, and August, this Beard is bent somewhat below the middle, namely, about 2/5 from the bottom of it, almost to a right Angle, and the under part of it is wreath'd lik a With; the substance of it is very brittle when dry, and it will very easily be broken from the husk on which it grows.
466 visits
-
There is a certain Down of a Plant, brought from the East-Indies, call'd commonly, though very improperly, Cow-itch, the reason of which mistake is manifest enough from the description of it, which Mr. Parkinson sets down in his Herbal, Tribe XI. Chap. 2. Phasiolus siliqua hirsuta; The hairy Kidney-bean, called in Zurratte where it grows, Couhage: We have had (says he) another of this kind brought us out of the East-Indies, which being planted was in shew like the former, but came not to perfection, the unkindly season not suffering it to shew the flower; but of the Cods that were brought, some were smaller, shorter, and rounder then the Garden kind; others much longer, and many growing together, as it were in clusters, and cover'd all over with a brown short hairiness, so fine, that if any of it be rubb'd, or fall on the back of ones hand, or other tender parts of the skin, it will cause a kind of itching, but not strong, nor long induring, but passing quickly away, without either danger or harm; the Beans were smaller then ordinary, and of a black shining colour.
493 visits
-
Moss is a Plant, that the wisest of Kings thought neither unworthy his speculation, nor his Pen, and though amongst Plants it be in bulk one of the smallest, yet it is not the least considerable: For, as to its shape, it may compare for the beauty of it with any Plant that grows, and bears a much bigger breadth; it has a root almost like a seedy Parsnep, furnish'd with small strings and suckers, which are all of them finely branch'd, like those of the roots of much bigger Vegetables; out of this springs the stem or body of the Plant, which is somewhat Quadrangular, rather then Cylindrical, most curiously fluted or lining with small creases, which run, for the most part, parallel the whole stem; on the sides of this are close and thick set, a multitude of fair, large, well-shap'd leaves, some of them of a rounder, others of a longer shape, according as they are younger or older when pluck'd; as I ghess by this, that those Plants that had the stalks growing from the top of them, had their leaves of a much longer shape, all the surface of each side of which, is curiously cover'd with a multitude of little oblong transparent bodies, in the manner as you see it express'd in the leaf B, in the XIII. Scheme.
420 visits
-
I have for several years together, in the Moneths of June, July, August, and September (when any of the green leaves of Roses begin to dry and grow yellow) observ'd many of them, especially the leaves of the old shrubs of Damask Roses, all bespecked with yellow stains; and the undersides just against them, to have little yellow hillocks of a gummous substance, and several of them to have small black spots in the midst of those yellow ones, which, to the naked eye, appear'd no bigger then the point of a Pin, or the smallest black spot or tittle of Ink one is able to make with a very sharp pointed Pen.
Examining these with a Microscope, I was able plainly to distinguish, up and down the surface, several small yellow knobs, of a kind of yellowish red gummy substance, out of which I perceiv'd there sprung multitudes of little cases or black bodies like Seed-cods, and those of them that were quite without the hillock of Gumm, disclos'd themselves to grow out of it with a small Straw-colour'd and transparent stem, the which seed and stem appear'd very like those of common Moss (which I elsewhere describe) but that they were abundantly less, many hundreds of them being not able to equalize one single seed Cod of Moss.
431 visits
-
[All kinds of effects of freezing - see the book for explanation]
406 visits
-
[Its all explained here in the book in 17th century English]
426 visits
-
These Glass Drops are small parcels of coarse green Glass taken out of the Pots that contain the Metal (as they call it) in fusion, upon the end of an Iron Pipe; and being exceeding hot, and thereby of a kind of sluggish fluid Confidence, are suffered to drop from thence into a Bucket of cold Water, and in it to lye till they be grown sensibly cold.
Some of these I broke in the open air, by snapping off a little of the small stem with my fingers, others by crushing it with a small pair of Plyers; which I had no sooner done, then the whole bulk of the drop flew violently, with a very brisk noise, into multitudes of small pieces, some of which were as small as dust, though in some there were remaining pieces pretty large, without any flaw at all, and others very much flaw'd, which by rubbing between ones fingers was easily reduced to dust; these dispersed every way so violently, that some of them pierced my skin. I could not find either with my naked Eye, or a Microscope, that any of the broken pieces were of a regular figure, nor any one like another, but for the most part those that flaw'd off in large pieces were prettily branched.
The ends of others of these drops I nipt off whilst all the bodies and ends of them lay buried under the water, which, like the former, flew all to pieces with as brisk a noise, and as strong a motion...
449 visits
-
A U-tube contains mercury, on which floats a rod supporting a scratching point, which makes a “tracing” on blackened paper wrapped round a revolving drum. Between the manometer and the cannula which is introduced into the central end of a cut artery is a three-way cock, which leads to a pressure-bottle containing a half saturated solution of sodic sulphate. This solution prevents blood from clotting. Before it is connected with the artery the apparatus is filled from the pressure-bottle. The cock is then turned into the second position, and the bottle raised until the mercury in the manometer stands at a level somewhat higher than that which it may be expected to attain under the influence of blood-pressure. The cannula being then inserted into an artery, the cock is turned into the third position, which places the manometer in connection with the blood, and excludes the pressure-bottle. As the mercury is a little higher than blood-pressure, some of the sodic sulphate solution enters the artery, but no blood enters the cannula. The scratching point, rising and falling with every variation in blood-pressure, makes a record on the soot-blackened paper, which is subsequently removed from the drum, and varnished.
691 visits
-
A, An ivory button which is pressed on the skin over the radial artery by a metal spring.
B, A continuous screw which works against the cogwheel
C. By rotating B, the lever
D is raised to a position in which its point scratches the travelling-plate
E (covered with blackened paper).
F, A box containing clockwork which moves E.
G, A screw by means of which the pressure of the spring is adjusted to the force of the pulse.
735 visits
-
Image 4870
604 visits
-
Image 4869
573 visits
-
Image 4868
565 visits
-
Image 4867
584 visits
-
Image 4866
565 visits
-
Image 4865
592 visits
-
Image 4864
603 visits
-
Image 4863
586 visits
-
Image 4862
560 visits
-
Image 4861
580 visits
-
Image 4860
557 visits
-
Image 4859
575 visits
-
Image 4858
546 visits
-
Image 4857
575 visits
-
Image 4856
561 visits
-
Image 4855
579 visits
-
Image 4854
561 visits
-
Image 4853
617 visits
-
Image 4852
629 visits
-
Image 4851
586 visits
-
Image 4850
609 visits
-
Image 4849
598 visits
-
Image 4848
595 visits
-
Image 4847
600 visits
-
The Lunar Orbiter project was initiated in 1963 as part of the U.S. Apollo program to land men on the Moon during the decade of the nineteen sixties.
Lunar Orbiter’s primary mission was to take and transmit both wide-angle and closeup images of the Moon. Lunar Orbiters photographed many areas of scientific interest and provided general photographic coverage of much of the moon’s surface. These pictures were then used to select the best landing sites for the first manned lunar landings. Orbiters also showed that the moon’s gravitational field permitted stable orbits.
Lunar Orbiter 1 was launched atop an Atlas-Agena D rocket on August 10, 1966. The last in the project, Lunar Orbiter 5, was launched on August 1, 1967. All five missions were successful.
The first three missions were similar. After each launch, the Agena stage’s booster engine was fired to send the spacecraft on a 90-hour coasting trajectory to the Moon, about 386,160 kilometers (240,000 miles) distant.
As the spacecraft neared the Moon, its on-board engine was fired as a retrorocket to slow the Orbiter and permit it to go into orbit around the Moon.
849 visits
-
Two early types of liquid-fuel, rocket motors. Left, the original ARS motor; right, a four-nozzle motor for ARS No. 4 rocket.
Thrust stud for fastening to rocket
Blast chamber
Fuel feed
Oxygen feed
Nozzle
Water jacket
Nozzles
Thrust and fuel column attached to rocket
Fuel feed
878 visits
-
The Apollo Lunar Hand Tool Carrier holds 32 kilograms (70 pounds) of equipment, including a trenching tool, two geology scoops, four rock bags, a portable magnetometer, and five cameras.
774 visits
-
Launched into earth orbit on May 14, 1973, Skylab was a research center that housed three-man crews on three different visits to the space station. The longest mission lasted nearly three months.
I
M131 chair control
Sleep compartment 70 sq ft
II
Head 30 sq ft
Wardroom 97 sq ft
III
M507 gravity substitute work bench
Experiment compartment 181 sq ft
M171 gas analyzer
M171 helmet stowage
ESS
IV
M092 LBNPD
Electric power control console
M131 rotating chair
805 visits
-
The German-developed V-1 was an automatically controlled pilotless aircraft for use against Allied cities during World War II.
The missile was launched from ground ramps. Once in the air, automatic controls on board the craft took over. The V-1 climbed to a predetermined altitude, followed a compass course, and dove to the ground after a preset distance had been covered.
This mid-wing monoplane was powered by a unique pulsejet engine above the rear portion of the fuselage.
The relatively low speed of the missile made it easy prey for antiaircraft guns or fighters.
842 visits